Extracellular Vesicle–Derived miR-124 Resolves Radiation-Induced Brain Injury
نویسندگان
چکیده
منابع مشابه
Radiation-induced brain injury: A review
Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with mo...
متن کاملFocusing in on radiation induced brain injury
Cognitive dysfunction following cranial radiotherapy remains a significant clinical problem, particularly in patients receiving whole brain radiation and in children. This has prompted development of therapeutic strategies that spare regions involved in learning and memory, particularly the hippocampus, which contains a radiation-sensitive population of neural precursor cells that actively divi...
متن کاملExtracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor
Activation of purinergic receptors by extracellular ATP (eATP) released from injured cells has been implicated in the pathogenesis of many neuronal disorders. The P2X7 receptor (P2X7R), an ion-selective purinergic receptor, is associated with microglial activation and paracrine signaling. However, whether ATP and P2X7R are involved in radiation-induced brain injury (RBI) remains to be determine...
متن کاملAmeliorative effects of Hesperidin on radiation induced brain injury in rats
Background: Extensive research has been focused on radiation induced brain injury. Animal and human studies have shown that flavonoids have remarkable toxicological profiles. This study aims to investigate the neuroprotective effects of hesperidin in an experimental radiation induced brain injury. Materials and Methods: 32 adult male Wistar-Albino rats were randomly divided into 4 groups (contr...
متن کاملmiR-124-regulated RhoG
RhoG is a member of the Rho family of small GTPases sharing highest sequence similarity with Rac and Cdc42. Mig-2 and Mtl represent the functional equivalents of RhoG in Caenorhabditis elegans and Drosophila, respectively. RhoG has attracted great interest because it plays a central role in the regulation of cytoskeletal reorganization in various physiological and pathophysiological situations....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Research
سال: 2020
ISSN: 0008-5472,1538-7445
DOI: 10.1158/0008-5472.can-20-1599